Cyclic Homology of H-unital (pro-)algebras, Lie Algebra Homology of Matrices and a Paper of Hanlon’s

نویسنده

  • GUILLERMO CORTIÑAS
چکیده

We consider algebras over a field k of characteristic zero. The article is concerned with the isomorphism of graded vectorspaces H(gl(A)) ∼ → ∧(HC(A)[−1]) between the Lie algebra homology of matrices and the free graded commutative algebra on the cyclic homology of the k-algebra A, shifted down one degree. For unital algebras this isomorphism is a classical result obtained by Loday and Quillen and independently by Tsygan. For H-unital algebras, it is known to hold too, as is that the proof follows from results of Hanlon’s. However, to our knowledge, the proof is not immediate, and has not been published. In this paper we fill this gap in the literature by offering a detailed proof. Moreover we establish the isomorphism in the general setting of (H-unital) pro-algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

Dialgebra (co)homology with Coeecients

Dialgebras are a generalization of associative algebras which gives rise to Leibniz algebras instead of Lie algebras. In this paper we deene the dialgebra (co)homology with coeecients, recovering, for constant coeecients, the natural bar homology of dialgebras introduced by J.-L. Loday in L6] and denoted by HY. We show that the homology HY has the main expected properties: it is a derived funct...

متن کامل

Loday–Quillen–Tsygan Theorem for Coalgebras

The original Loday–Quillen–Tsygan Theorem (LQT) is proven by Loday and Quillen [13] and independently by Tsygan [20]. It states that the ordinary Lie homology (here referred as Chevalley–Eilenberg–Lie homology) of the Lie algebra of the infinite matrices gl(A) over an unital associative algebra A is generated by the cyclic homology of A as an exterior algebra. Although Lie algebras have been st...

متن کامل

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

Excision in Hochschild and Cyclic Homology without Continuous Linear Sections

We generalise the known excision results for Hochschild, cyclic and periodic cyclic homology to algebras in symmetric monoidal categories. Our abstract result also contains excision for extensions of nuclear H-unital Fréchet algebras. As an application, we compute the Hochschild and cyclic homology of the algebra of Whitney functions on an arbitrary closed subset of a smooth manifold, and the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008